ТАРГЕТНЫЕ БЕЛКОВЫЕ РАЗРУШИТЕЛИ – НЕТРАДИЦИОННЫЙ ПОДХОД В СОЗДАНИИ ЛЕКАРСТВ

УДК: 547.96 BAK: 02.00.16 **Василевич Н.И.**¹, к.х.н., nvasile2003@yahoo.com, **Честков А.В.**¹, к.б.н., **Янг М.** (Mengli Yang)¹, PhD, **Сан Л.** (Lichun Sun)^{1,2,3}, PhD, peptide612@gmail.com, Isun@tulane.edu

Традиционный подход к созданию лекарств в основном базируется на поиске ингибиторов патологически активированных рецепторов, конкурирующих с природными лигандами. Сравнительно недавно стало развиваться новое направление – деградация белка (targeted protein degraders) с помощью таргетных белковых разрушителей: молекулярных клеев и PROT-AC. Эта стратегия позволяет уменьшить содержание аберрантно функционирующего белка в клетке аналогично тому, как это достигается с помощью методов редактирования генов (например, CRISPR-Cas9).

Действие белковых разрушителей основывается на образовании трехкомпонентного комплекса, включающего белок-мишень и ЕЗ убиквитинлигазу, в результате пространственного сближения которых происходит полиубиквитинилирование белка с последующей протеасомной деградацией. Первые результаты клинических исследований демонстрируют, что белковые разрушители могут предложить решения в тех областях, где другие современные методы лечения оказались неэффективными.

До недавнего времени понятие о механизме действия большинства лекарственных препаратов базировалось на идеях о рецепторах и "волшебной пуле", которые были сформулированы в 1907 г. Паулем Эрлихом (Paul Ehrlich). Каждая клетка организма содержит белковые рецепторы, или мишени, которые могут связываться с эндогенными лигандами, вызывая каскад последующих реакций и приводя к определенному физиологическому ответу. В здоровом организме все эти процессы сбалансированы. Однако при заболевании в безупречно отлаженном механизме происходят сбои, приводя к патологической активации или дезактивации какоголибо белка и нарушению всего каскада процессов. Вводимое извне вещество, или лекарство, связывается с аберрантно функционирующим рецептором и таким образом предотвращает прогрессирование болезни. Большинство лекарств стимулируют, имитируют, угнетают или полностью блокируют действие экзогенных лигандов. Например, жаропонижающее и противовоспалительное действие ацетилсалициловой кислоты (аспирина) связано с ингибированием ферментов

циклооксигеназы, а гипотензивное, антиангинальное и антиаритмическое действие атенолола – с блокированием β 1-адренорецептора.

Основные типы взаимодействия лекарственного препарата с белковым рецептором могут быть следуюшими:

- агонисты имитируют действие природных лигандов, усиливая ответ белка-мишени, примерами таких соединений могут служить адренергические и холинергические средства;
- антагонисты, например адрено-, холино- и гистаминоблокаторы, конкурируют с природным лигандом за рецептор, блокируют и вызывают снижение его функций;
- неконкурентные, или аллостерические, ингибиторы связываются с макромолекулой не в месте ее взаимодействия с природным лигандом, а на расположенном рядом участке, вызывая изменение пространственной структуры и аффинности рецептора. Примером лекарств, действующих по этому типу, являются бензодиазепины. Соединяясь со специ-

Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd, Guangdong, China.

Department of Medicine, School of Medicine, Tulane University Health Sciences Center, New Orleans, USA.

³ Sino-US Innovative Bio-Medical Center and Hunan Beautide Pharmaceuticals, Xiangtan, Hunan, China.

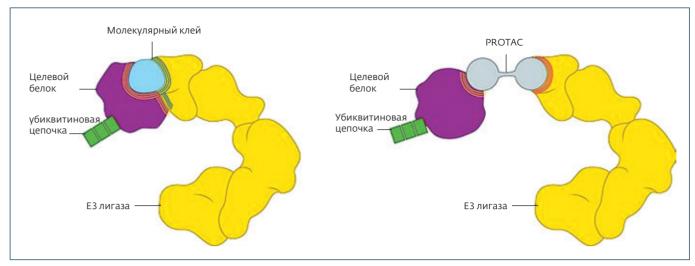


Рис.1. Трехкомпонентный комплекс, образуемый молекулярным клеем (а) и химерной молекулой PROTAC (б)

фическими бензодиазепиновыми рецепторами, которые взаимосвязаны с рецепторами гамма-аминомасляной кислоты (ГАМК), они изменяют пространственную конфигурацию последних и увеличивает прочность их связи с гамма-аминомасляной кислотой

Отличительными свойствами всех типов перечисленных выше препаратов служит зависимость наблюдаемого эффекта от концентрации, а также то, что продолжительность действия определяется прочностью связи лигандрецептор.

Однако сравнительно недавно в литературе появились сообщения о потенциальных лекарственных препаратах, действующих по совершенно иному принципу: взаимодействие их с рецептором приводит не к изменению свойств последнего, но к полному разрушению белка, на котором расположен рецептор. Эти соединения носят название таргетных белковых разрушителей (targeted protein degraders). Направленная деградация белка – новая стратегия, позволяющая уменьшить содержание аберрантно функционирующего белка в клетке, аналогично тому, как это достигается с помощью методов редактирования генов (например, CRISPR-Cas9). При этом сохраняются все преимущества использования в качестве инструментов малых молекул: метаболическая стабильность, возможность перорального применения и пр. В отличие от привычных агонистов и антагонистов, таргетные белковые разрушители действуют нестехиометрически, восстанавливаясь после каждого цикла, подобно ферментам или катализаторам.

Механизм действия таргетных белковых разрушителей основывается на том, что они связывают в единый комплекс белок-мишень и убиквитинлигазу ЕЗ. В результате пространственного сближения происходит полиубиквитинирование белка с последующей его деградацией с участием протеасом. Новизна таких соединений заключается в том, что они используют естественный клеточный процесс, но вызывают взаимодействие между лигазами ЕЗ и белками, которые в норме с ними не связываются [1].

Молекулярные белковые разрушители могут быть классифицированы в две большие группы: молекулярные клеи (molecular glue) и химерные конструкции убиквитин-зависимой протеасомной деградации белков (proteolysis-targeting chimeras, или PROTAC). Несмотря на сходный механизм действия, строение молекулярных клеев и PROTAC существенно отличается. Химерная молекула PROTAC содержит два фрагмента, каждый из которых обеспечивает связывание либо с белком-мишенью, либо с убиквитинлигазой ЕЗ, и эти фрагменты соединены между собой гибким линкером. Молекулярные клеи – это, как правило, низкомолекулярные соединения, которые связываются с убиквитинлигазой и изменяют ее поверхность. В результате повышается сродство к белку-мишени, который "приклеивается" к убиквитинлигазе с образованием трехкомпонентного комплекса (рис.1). [2]. Различия между двумя типами белковых разрушителей приведены в табл.1 [3].

МЕХАНИЗМ УБИКВИТИН-ЗАВИСИМОЙ ПРОТЕАСОМНОЙ ДЕГРАДАЦИИ

Функционирование любой клетки зависит от физиологических уровней всех белков, входящих в ее состав, которые в свою очередь, определяются балансом скорости синтеза и скорости деградации. Деградация внутрикле-

Табл.1. Сравнение молекулярных клеев и PROTAC

Характеристика	Молекулярный клей	PROTAC
Механизм	Связывается с ЕЗ или белком-мишенью, облегчая белок-белковые взаимодействия	Связывается с белком-мишенью и E3 одновременно
Белок-мишень	Необходимо идентифицировать	Известный
Стратегия поиска	Случайное открытие	Рациональный дизайн
Валентность	Моновалентный	Бивалентный
Линкер	Нет	Есть
Молекулярный вес	Обычно низкий	Высокий
Правило Липински	Обычно подчиняется	Не подчиняется
Сайт связывания с белком-мишенью	Не важен	Необходим

точных белков происходит двумя основными путями: аутофагией и убиквитин-опосредованной протеасомной деградацией, за исследование которой Аарону Сичановеру (Aaron Ciechanover), Аврааму Гершко (Avram Hershko) и Ирвину Роузу (Irwin Rose) присуждена Нобелевская премия по химии 2004 года.

Благодаря их работам было показано, что деградация белков протеасомами происходит избирательно, и расщеплению подвергаются только те белки, которые несут на своей поверхности "поцелуй смерти" – цепочку, состоящую из нескольких звеньев убиквитина. Полиубиквитинирование белка – это тот триггерный сигнал, который распознается протеасомой и проводит к его деградации.

Процесс убиквитинирования белков происходит в несколько стадий с участием ферментов E1 (убиквитин-активирующий фермент), Е2 (убиквитин-конъюгирующий фермент) и ЕЗ (убиквитинлигаза). Сначала убиквитин присоединяется к убиквитин-активирующему ферменту E1 в присутствии АТФ. Затем активированный убиквитин переносится на убиквитин-конъюгирующий фермент E2. Убиквитинлигаза E3 распознает белковый субстрат, рекрутирует комплекс Е2-убиквитин и катализирует перенос убиквитина с Е2 на субстрат. Единичный цикл реакций приводит к моноубиквитинированию целевого белка, что может изменить его функцию. тогда как в результате многократного повторения образуется полиубиквитинированный субстрат, распознаваемый и расщепляемый протеасомой (рис.2) [4]. Геном человека кодирует 2 фермента Е1, 40 ферментов Е2 и >600 лигаз Е3 [1].

Убиквитинлигазы ЕЗ играют важную роль к регуляции важнейших биологических процессов. Нарушения в их функционировании отмечаются, в частности, при онкологических заболеваниях. Более того, обнаружено, что эти ферменты сверхэкспрессируются в раковых клетках, и их уровень коррелирует с повышенной хеморезистентностью и плохим клиническим прогнозом [5].

В начале 2000-х было продемонстрировано, что убиквитинлигаза ЕЗ может быть искусственно перенаправлена с эндогенных субстратов на селективное убиквитинирование выбранного белка-мишени с помощью молекулярного клея или PROTAC, что приводит к его протеасомной деградации [6].

молекулярный клей

Печально известная история талидомида – успокоительного для лечения утренней тошноты у беременных – имеет свое продолжение.

В 1964 году J. Sheskin применил препарат для купирования кожных высыпаний у больного проказой [7], а в 1990-х годах было показано, что талидомид может ингибировать ангиогенез и использоваться для лечения раковых заболеваний, в том числе множественной миеломы [8].

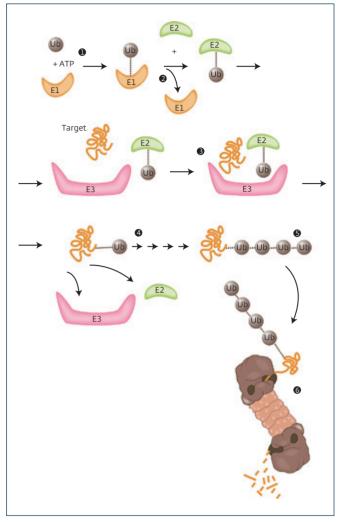
Механизм действия препарата был установлен значительно позже: оказалось, что талидомид одновременно связывается с белком цереблоном, компонентом CRL4 CRBN убиквитинлигазы ЕЗ, и факторами транскрипции Ikaros и Aiolos [9], вызывая разрушение последних. Структурные исследования показали, что талидомид, так же как и его аналоги, леналидомид

В наличии на складе в Москве: расходные материалы для хроматографии, запчасти для хроматографов

Шприцевые фильтры, виалы, мембранные фильтры

Хроматографические колонки

Активные клапаны насоса


Дейтериевые лампы

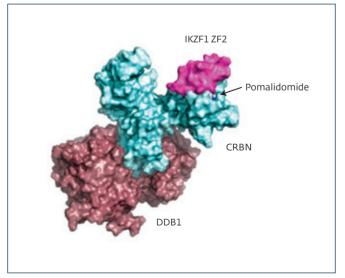

Наборы для обслуживания ВЭЖХ

Рис.2. Механизм убиквитин-опосредованной протеасомной деградации [4]

Рис.3. Кристаллическая структура комплекса CRBN-DDB1-IKZF1-помалидомид (PDB code: 6H0F) [3]

и помалидомид, связываются с неглубоким гидрофобным карманом на поверхности цереблона и инициируют белок-белковое взаимодействие ЕЗ с белкамимишенями, которые сами по себе не обладают никакой аффинностью к цереблону (рис.3).

Для обозначения молекул, которые, подобно вышеупомянутым талидомиду, леналидомиду и помалидомиду, способны склеивать два белка — в большинстве случаев убиквитинлигазу ЕЗ и белок, связанный с заболеванием, Стюарт Шрайбер (Stuart L. Schreiber) предложил использовать термин "молекулярный клей" [10].

Молекулярные клеи имеют ряд преимуществ перед традиционными низкомолекулярными ингибиторами. Во-первых, как было упомянуто, убиквитинилирование и последующая деградация осуществляются субстехиометрическим и каталитическим образом. А самое главное, поскольку для взаимодействия не требуется наличия связывающего кармана на белкемишени, возможно расщепление ранее недоступных или не поддающихся ингибированию классическими методам белков.

Примеры молекулярных клеев с указанием лигазы ЕЗ и белка-мишени приведены в табл.2 [3]. Несколько молекулярных клеев (талидомид, леналидомид и помалидомид) прошли клинические испытания и получили разрешение FDA на использование в клинике, ряд кандидатов находятся на разных стадиях клинических исследований. К ним относятся, в частности, NVP-DKY709 (Novartis), который проходит клинические исследования для лечения солидных опухолей на поздних стадиях, BAY 2666605 (Bayer совместно с Институтом Броуда) – для лечения метастатической меланомы и других запущенных солидных опухолей, СҒТ7455 (С4 Therapeutics) – для лечения множественной миеломы и лимфомы (табл.3) [2]. Однако, несмотря на достигнутые успехи, поиск новых молекулярных клеев остается чрезвычайно сложной задачей, трудно поддающейся рациональному подходу, и полагается в основном на случайные открытия.

ХИМЕРНЫЕ КОНСТРУКЦИИ PROTAC

Молекула молекулярного клея взаимодействует одновременно с двумя белками, сближая в пространстве белок-мишень и ЕЗ лигазу. Однако той же цели можно достичь несколько иначе, соединив гибким линкером два фрагмента, каждый из которых ответственен за рекрутирование только одного из белков. Так устроена молекула PROTAC — химера, нацеленная на протеолиз. Термин PROTAC был предложен в 2001 году в статье "PROTACS: химерные молекулы, которые нацеливают белки на комплекс Skp1-Cullin-F box для убик-

Табл.2. Примеры молекулярных клеев [3]

Молекулярный клей	Лигаза	Белок-мишень	
талидомид	CRL4 ^{CRBN}	IKZF1, IKZF3	
леналидомид	CRL4 ^{CRBN}	IKZF1, IKZF3, CK1α	
помалидомид	CRL4 ^{CRBN}	IKZF1, IKZF3	
CC-885	CRL4 ^{CRBN}	GSPT1	
CC-90009	CRL4 ^{CRBN}	GSPT1	
CC-92480	CRL4 ^{CRBN}	IKZF1, IKZF3	
CC-220	CRL4 ^{CRBN}	IKZF1, IKZF3, ZFP91, ZNF98	
CC-122	CRL4 ^{CRBN}	IKZF1, IKZF3, ZFP91	
Индисулам (indisulam)	CRL4 ^{DCAF15}	RBM39	
E7820	CRL4 ^{DCAF15}	RBM39	
CQS	CRL4 ^{DCAF15}	RBM39	
Тасисулам (tasisulam)	CRL4 ^{DCAF15}	RBM39	
BI-3802	SLAH1	BCL6	
ANI	LC3	mHTT	
AN2	LC3	mHTT	
8F2O	LC3	mHTT	
1005	LC3	mHTT	
Асукамицин (asukamycin)	UBR7	TP53	
dCeMM2	DDB1	Cyclin K	
dCeMM3	DDB1	Cyclin K	
dCeMM4	DDB1	Cyclin K	
(R)-CR8	DDB1	Cyclin K	
HQ461	DDB1	Cyclin K	
NRX-103094	SKPI ^{β-TrCP}	B-catenin peptide	

витинирования и деградации" (PROTACS: Chimeric molecules that target proteins to the Skpl-Cullin-F box complex for ubiquitination and degradation) для описания соединения, содержащего пептидный фрагмент и способного пространственно сближать лигазный комплекс E3 SCFβ-TRCP и целевой белок метионинаминопептидазу-2 (MetAp-2). После объединения компонентов в единый комплекс происходит полиубиквитинилирование белка и его расщепление посредством эндогенного пути деградации убиквитин-протеасомой [6].

Разделение функций внутри одной молекулы позволяет рационализировать подход к ее конструированию и оптимизировать каждый из элементов независимо. Однако, чтобы вместить все функциональные части, такая молекула должна быть достаточно большой и с точки зрения медицинского химика уродливой, поскольку вступает в противоречие с общепринятыми правилами о том, каким должно быть лекарство. Очевидно, что молекулы PROTAC не подходят под "правило пяти" Липински: вес ее слишком велик, и обычно она содержит слишком много доноров и акцепторов

Табл.3. Молекулярные клеи, одобренных Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов США или проходящих клинические испытания [2]

тов США или прохооящих кл Молекулярный клей	Структурная формула	Заболевания	Этап исследования	
Леналидомид	NH ₂ ONH	NH ₂ NH Множественная миелома и др.		
Помалидомид	0 N-/=0	Множественная миелома	Одобрено для лечения	
	NH ₂ O O NH	Саркома Капоши	одобрено для лечения	
Талидомид	NH ₂ O O NH	Множественная миелома	Одобрено для лечения	
		Лепрозная узловатая эритема	Одоорено для лечения	
Ибердомид	N-V-NHO	Множественная миелома	2-я и 3-я фазы клинических испытаний	
		Лимфома	1-я фаза клинических испытаний	
BAY2666605	CF ₃	Метастазирующая меланома и др. солидные опухоли поздней стадии	1-я фаза клинических испытаний	
CC-90009	F F NH O NH	Острая миелоидная лейкемия	l-я фаза клинических испытаний	
CFT7455	O O O NHOO	Множественная миелома	1-я фаза клинических	
		Лимфома	испытаний	
NVP-DKY709	N-V-NH	Солидные опухоли поздней стадии	1-я фаза клинических испытаний	

водородных связей. Поэтому долгое время оставались сомнения в том, могут ли PROTAC стать перорально доступными препаратами. Однако последующие исследования показали хорошую биодоступность химерных соединений, и ряд кандидатов, проходящих клинические исследования, рекомендованы именно как пероральные лекарства.

Понятия о связывании, селективности и дозировании для PROTAC также расходятся с общепринятыми представлениями. Действие традиционного физиологически активного низкомолекулярного вещества зависит от прочности связывания и. следовательно, от того, как долго оно может конкурировать с эндогенными лигандами. Способность же PROTAC к разрушению белка зависит не от прочности связывания, а от того, как быстро бифункциональная молекула может собрать трехкомпонентный комплекс и поместить убиквитиновую метку на нужный белок. Другими словами, важны не термодинамические параметры связывания, а кинетика образования комплекса.

Появляется все больше доказательств того, что белоксвязывающая часть молекулы не обязательно должна обладать селективностью - параметр, который чрезвычайно важен для низкомолекулярных препаратов: селективные разрушители могут быть созданы на основе неселективных ингибиторов [11]. В отличие от классической фармакологии, технология PROTAC может основываться на любом типе связывания с любым участком белка, при возможности пространственного сближения последнего с ЕЗ-лигазой, поэтому для связывания с белком-мишенью могут использоваться агонисты или антагонисты ортостерических лигандов, а также аллостерические лиганды [12].

Первым примером полностью непептидного белкового разрушителя стал PROTAC на основе JQ1-ингибитора бромодомен-содержащего белка BRD4 [13, 14]. Далеко не полный перечень целевых белков включает андрогеновый (AR) и эстрогеновый (ER) рецепторы, TRIM24, BRD9, BRD7, STAT3, IRAK4, BCL-xI, BTK, TRK, EGFR-L858R [15].

Невозможно переоценить влияние линкера на активность сконструированного PROTAC, хотя оптимизация его длины и точки присоединения все еще остается полностью эмпирической задачей. Слишком короткий линкер может нарушить функцию PROTAC из-за затрудненного сближения двух белков. Линкеры различной длины могут влиять на селективность к мишеням, что, возможно, связано с конформацией, которую принимают PROTAC. Кроме того, линкер частично определяет такие свойства химерной молекулы, как растворимость, гидрофильность/липофильность, метаболическая стабильность и пр. Наиболее часто встречаются алкильные

и ПЭГ-содержащие линкеры, хотя зачастую внимание уделяют конформационно более жестким соединениям. Влияние длины линкера на деградацию эстрогенового рецептора (ER) изучалось авторами в работе [16]. Был синтезирован ряд химерных молекул, содержащих ІСІ 182,780 (Faslodex) - клинический антагонист эстрогенового рецептора (ER), и субстрат лигазы pVHL, соединенных линкерами разной длины. Разрушение ER в клетках отслеживали с помощью вестерн-блоттинга и флуорометрического анализа. Оказалось, что оптимальное расстояние между двумя фрагментами составляет 16 атомов.

Несмотря на то что известно более 600 убиквитинлигаз человека, наиболее часто применяются субстраты трех из них: VHL, CRBN и IAP, хотя ведутся исследования по рекрутированию и других лигаз: KEAP1, DCAF15, RNF4, RNF114, DCAF16, AhR. Лидеры в этой области – лиганды VHL и CRBN – обладают следующими благоприятными свойствами:

- сильная, специфическая и биофизически подтвержденная аффинность связывания с целевой лигазой ЕЗ:
- приемлемый физико-химический профиль, включая молекулярную массу, липофильность, растворимость, отсутствие очевидных реакционноспособных групп или метаболических горячих точек, а также мешающих анализу фрагментов, дающих ложноположительные результаты (PAINS);
- хорошо охарактеризованная структурная информация, касающаяся способов их связывания [17].

Структуры этих лигандов, а также некоторых PROTAC на их основе приведены на рис.4.

Несмотря на возможность оптимизации фрагментов белкового разрушителя по-отдельности, общие свойства молекулы не являются линейной комбинацией свойств составных элементов. Модификации каждого фрагмента приводят к изменениям характеристики в целом, которые нельзя предсказать априори [18]. Поэтому возможности рационального дизайна остаются ограниченными, и при поиске активного кандидата исследователи полагаются на изучение библиотек химерных молекул.

За последнее десятилетие несколько крупных фармацевтических компаний и стартапов проявили интерес и вложили ресурсы в развитие технологии PROTAC. В настоящее время в клинических испытаниях находятся около 15 кандидатов, большинство из которых нацелены на онкологические мишени (табл.4) [19, 20]. Два соединения, разработанные компанией Arvinas, перешли ко второй фазе клинических исследований. Первый продукт, ARV-110, предназначен для лечения рака простаты. Во время 1-й фазы исследований среди пациентов с резистентным к кастрации мета-

Рис.4. Лиганды ЕЗ убиквитинлигаз VHL и CRBN и молекулы PROTAC на их основе

ГАРМОНИЯ НАДЕЖНОСТИ И ЭФФЕКТИВНОСТИ

Газовый хроматограф FCI-GC-2100

Для широкого круга научных и рутинных задач в нефтехимии, тонкой химической технологии, охране окружающей среды, биологии, медицине, безопасности пищевых продуктов и товаров народного потребления, производстве высокочистых газов и электроники и прочих отраслях.

Одновременная онлайн-обработка данных с нескольких хроматографов.

Автоматическая система электронного управления температурами и газовыми потоками.

Контроль рабочих температур в диапазоне 4–450°С и с точностью ±0.1°С.

Автосамплеры для ввода жидких или парофазных проб.

Оснащение различными типами детекторов: ПИД, ЭЗД, ДТП, АФД и ПФД, а также масс-спектрометрическим.

Современные инертные конструкционные материалы и минимизированные мертвые объемы детекторов и испарительной камеры инжектора.

Простое и понятное ПО, совместимое с любыми ПК под управлением ОС Windows, начиная с Windows XP.

Табл.4. Молекулы PROTAC, находящиеся на стадии клинических исследований

Компания	Разру- шитель	Ми- шень	Показания	Е3 лигаза	Путь введения	Этап исследо- вания	Номер исследова- ния
Arvinas	ARV-110	AR	Рак простаты				NCT03888612
Arvinas/ Pfizer	ARV-471	ER	Рак молочной	CRBN Пероральный	2-я фаза	NCT04072952	
Accutar Biotech	AC682	EK	железы		Пероральный		NCT05080842
Arvinas	ARV-766	AR	Рак простаты	Не раскрыто			NCT05067140
Bristol Myers Squibb	CC-94676	7412	такпростаты	CRBN		NCT04428788	
Dialectic Therapeutics	DT2216	BCL-xI	Гемобластоз и солидные опухоли	VHL			NCT04886622
Foghorn Therapeutics	FHD-609	BRD9	Синовиальная саркома	B/в He		NCT04965753	
Kymera/ Sanofi	KT-474		Аутоиммунные заболевания	раскрыто	раскрыто Пероральный	1-я фаза	NCT04772885
Kymera	KT-413	IRAK4	Диффузная крупноклеточная В-клеточная лимфома (мутант MYD88)	CRBN	Не раскрыто		Нет данных
	KT-333	STAT3	Гемобластоз и солидные опухоли	Не раскрыто			Нет данных
	NX-2127	ВТК	В-клеточные злокачественные новообразования				NCT04830137
Nurix Therapeutics	NX-5948	ВТК	В-клеточные злокачественные новообразования и аутоиммунные заболевания		Пероральный		NCT05131022
C4	CFT8634	BRD9	Синовиальная саркома	CRBN		IND (иссле- дование нового препара- та)	Нет данных
Therapeutics	CFT8919	EGFR- L858R	Немелкоклеточный рак легкого				Нет данных
Cullgen	CG001419	TRK	Рак и другие показания				Нет данных

статическом раке предстательной железы был продемонстрирован приемлемый профиль безопасности, а также уменьшение опухоли. Промежуточные данные 2-й фазы показали снижение уровня простат-специфического антигена (ПСА) — одного из основных маркеров рака предстательной железы, более чем на 50% у более чем 46% пациентов [21].

Второе соединение, разработанное Arvinas в партнерстве с Pfizer и находящееся во 2-й фазе клинических исследований — ARV-471 — предназначено для борьбы с раком молочной железы. Соединение продемонстрировало уменьшение числа рецепторов эстрогена в группах лечения до 89%. Кроме того, APB-471 исследуется в составе комбинированной терапии палбоциклибом, который в настоящее время проходит 1-б фазу испытаний.

* * * *

Белковые разрушители обладают целым рядом преимуществ по сравнению с традиционными низкомолекулярными лекарственными средствами. Они могут

ЛИТЕРАТУРА

- Fisher S.L., Phillips A.J. Targeted protein degradation and the enzymology of degraders // Current Opinion in Chemical Biology. 2018. V. 44. P. 47–55. DOI: 10.1016/j.cbpa.2018.05.004
- 2. **Vitale G.** Molecular glues are beginning to stick // Chemical & Engeneering News. 2022. V. 100. No. 29. https://cen.acs.org/pharmaceuticals/drug-discovery/Molecular-glues-startups-search-beyond-PROTACS/100/i29
- 3. **Dong G.**, **Ding Y.**, **He Sh.**, **Sheng Ch.** Molecular Glues for Targeted Protein Degradation: From Serendipity to Rational Discovery // J. Med. Chem. 2021. V. 64. No. 15. P. 10606–10620. DOI: 10.1021/acs.jmedchem.1c 00895
- 4. **Hershko A., Ciechanover A.** The Ubiquitin System // Annual Review of Biochemistry. 1998. V. 67. P. 425–479. DOI: 10.1146/annurev.biochem.67.1.425
- Sun Y. E3 ubiquitin ligases as cancer targets and biomarkers // Neoplasia. 2006. V. 8. No. 8. P. 645–654. DOI: 10.1593/neo.06376
- 6. Sakamoto K.M., Kim K.B., Kumagai A., Mercurio F., Crews C.M., Deshaies R.J. Protacs: chimeric molecules that target proteins to the Skp 1-Cullin-F box complex for ubiquitination and degradation // Proc Natl Acad Sci USA. 2001. V. 98. No. 15. P. 8554–9.
- Sheskin J. Thalidomide in the treatment of lepra reactions // Clin. Pharmacol. Ther. 1965. V. 6. P. 303–6. DOI: 10.1002/ cpt196563303
- D'Amato R.J., Loughnan M.S., Flynn E., Folkman J. Thalidomide is an inhibitor of angiogenesis // Proc Natl Acad Sci USA. 1994. V. 91. No. 9. P. 4082–5. DOI: 10.1073/pnas.91.9.4082
- Chamberlain P.P., Cathers B.E. Cereblon modulators: Low molecular weight inducers of protein degradation // Drug Discov Today Technol. 2019. V. 31. P. 29–34. DOI: 10.1016/j. ddtec. 2019.02.004
- Schreiber S.L. Immunophilin-Sensitive Protein Phosphatase Action in Cell Signaling Pathways // Cell. 1992. V. 70. P. 365–366. DOI: 10.1016/0092-8674(92)90158-9
- Jarvis L.M. Targeted protein degraders are redefining how small molecules look and act // Chemical & Engeneering News. 2018. V. 96. No. 8. https://cen.acs.org/articles/96/i8/

достигать высокой селективности, поскольку механизм их действия включает образование третичного комплекса: белок-мишень, лекарство и лигаза ЕЗ. Благодаря субстехиометрическому и каталитическому механизму один разрушитель может уничтожить множество копий патогенного белка, при этом возможно как ортостерическое, так и аллостерическое взаимодействие. В то время как малые молекулы блокируют только активный центр мишени, деструкторы разрушают все его функции.

Первые результаты клинических исследований демонстрируют, что белковые разрушители могут предложить решения в тех областях, где другие современные методы лечения оказались неэффективными.

Авторы выражают благодарность за поддержку Программе наук и инноваций Шэньчжэня (Грант №: KQTD20170810154011370), Сянтаньскому институту совместных инноваций и промышленных технологий и Сянтаньскому научно-техническому институту.

- targeted-protein-degraders-are-redefining-how-small-molecules-look-and-act.html#introduction
- Shimokawa K., Shibata N., Sameshima T., Miyamoto N., Ujikawa O., Nara H., Ohoka N., Hattori T., Cho N., Naito M. Targeting the allosteric site of oncoprotein BCR-ABL as an alternative strategy for effective target protein degradation // ACS Med Chem Lett. 2017. V. 8. P. 1042–1047.
- 13. **Bondeson D., Mares A., Smith I.** et al. Catalytic in vivo protein knockdown by small-molecule PROTACs // Nat Chem Biol. 2015. V. 11. P. 611–617. DOI: 10.1038/nchembio.1858
- 14. **Zengerle M.**, **Chan K.H.**, **Ciulli A.** Selective small molecule induced degradation of the BET bromodomain protein BRD4 // ACS Chem. Biol. 2015. V. 10. P. 1770–1777.
- Conway S.J. Bifunctional Molecules beyond PROTACs // J. Med. Chem. 2020. V. 63. P. 2802–2806 DOI: 10.1021/acs. jmedchem.0c 00293
- Cyrus K., Wehenkel M., Choi E.Y., Han H.J., Lee H., Swanson H., Kim K.B. Impact of linker length on the activity of PROTACs // Mol Biosyst. 2011. V. 7. P. 359–64. DOI: 10.1039/c 0mb00074d
- 17. **Ishida T., Ciulli A.** E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones // SLAS Disco. v. 2021. V. 26. No. 4. P. 484–502. DOI: 10.1177/2472555220965528
- Lai A.C., Toure M., Hellerschmied D., Salami J., Jaime-Figueroa S., Ko E., Hines J., Crews C.M. Modular PROTAC Design for the Degradation of Oncogenic BCR-ABL // Angew Chem Int Ed Engl. 2016. V. 55. P. 807–10. DOI: 10.1002/anie.201507634
- 19. **Mullard A.** Targeted protein degraders crowd into the clinic // Nat Rev Drug Disco. v. 2021. V. 20. P. 247–251.
- Békés M., Langley D.R., Crews C.M. PROTAC targeted protein degraders: the past is prologue // Nat Rev Drug Disco. v. 2022. V. 21. P. 181–200. DOI: 10.1038/s41573-021-00371-6
- Arvinas PROTAC® Protein Degrader Bavdegalutamide (ARV-110) Continues to Demonstrate Clinical Benefit in Men with Metastatic Castration-Resistant Prostate Cancer February 17, 2022. Press-release. https://ir.arvinas.com/ node/9036/pdf

17 и 18 ноября 2022 г. Москва

TEMA:

Современные аспекты химико-токсикологического и судебно-химического анализа

Место проведения: ИФХЭ РАН

Организаторы:

Ассоциация специалистов по химико-токсикологическому и судебно-химическому анализу, Институт физической химии и электрохимии им. А.Н. Фрумкина РАН (ИФХЭ РАН)